GLOBAL
eSOLUTIONS

&

AUTON Algoscript

Version 1.0
Developer's Guide

February 10, 2017
Version 1.00

Disclaimer: This work is the property Global eSolutions (HK) Limited (the “Company” or “GES").
Permission is granted for this material to be shared for non-commercial, educational purpose,
provided that this copyright statement appears on the reproduced materials and noftice is
given that the copying is by permission of the Company. To disseminate otherwise or to
republish requires written permission of the Company.

“AUTON" and "AUTON Algoscript” are trademarks of the Company or its affiliates.

All other trademarks and registered tfrademarks are the property of their respective owners.

Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017
FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

GLOBAL
eSOLUTIONS

Nz
] Introduction to AUTON Algoscript

1.1 Overview of AUTON Algoscripft

AUTON Algoscript is a proprietary C#-based script language used for directing GES’s AUTON
trading platform info making trade execution based on various user-defined conditions.
AUTON Algoscript lets you integrate streaming real-time and delayed data, historical data,
technical indicators, and even custom data info your own trading applications. It uses an
event-driven model, which is triggered on the event on new price data. The user may
program his/her own time-based event triggers should he/she wishes to do so.

The script supports a host of Windows .NET libraries for maximum flexibility for the user. It can
be executed in live mode for real frade execution, or in back-test mode based on historical
price data provided by AUTON or the users themselves. AUTON's reporting interface will
generate a host of relevant statistical data regarding the performance of the user's trading
strategy.

In short, AUTON Algoscript is a flexible, state-of-the-art programming platform for developing
automated trading system, included as part of every copy of AUTON client.

2 Algoscript Programming

Algoscript programming is the core feature of the AUTON system. The flexibility of a C#-
based architecture enables Algoscript to not only support execution of trades, but also user-
built risk management platform, network infrastructure, research suites, and portfolio
opfimization tools. The possible implementations of tools are endless and limited only to the
user’s level of imagination and skills. The following tutorial will allow a new user to get familiar
with the Algoscript programming language with an in-built example.

2.1 Creating your first Algoscript file

All Algoscript file has extension .alg, which upon compilation by AUTON will create an
Algoscript executable file with extension .ale. To create a new Algoscript file, click on the
Algo Trade button in the AUTON main menu:

The Algo Trade window will now pop up. Click File -> New -> With Skeleton:

Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017
FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

E * | GLOBAL
eSOLUTIONS
Algo Trade
File | Build Execute Document
| New » | With Skeleton

Open... Ctrl+O Blank
Save Ctrl+5 From Conversion...
Save As... F12
Close Alt+F4

You have created your first Algoscript file, we will now examine below the structure of a basic
Algoscript file and the purpose of each of its functions.

2.2 Structure of an Algoscript File

The Algoscripft file is essentially a C# class comprised of several major components:

M o=] M N oW W Ry

[¥+]

10 o
11
G |
13
14
15
18
17
18 O
19
20
I |
e
23
24
25
28
27 o
28
200 |
30 |
31]
ST |

The default
algorithm.

The space

using System;
using AlgoTrade.Interface;

namespace AlgoTrade

E public class RUN_ALGO NAME : Frogram

public RUN ALGO NAME (Interface.IhlgoTradeFunction func)

Start({) will be called when using script mode
public override int Start ()

J/ Btart vour implementation here
return

: base (func)

public override int CnTick()

1

1

1

Iy

i return 0;
i

1

1

1

Declaration

Constructor

Start() (Used only in
script mode)

OnTick() (Runs when
a price tick comes)

class name “RUN_ALGO_NAME" should be replaced by the name of your

labeled as Declaration is used to define any Input Parameters and/or
public/private variables you may use within the script.

Global eSolutions (HK) Limited
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong
FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E

T: +852 3412 3600

F: +852 2851 0017

W: www.ges.com.hk

GLOBAL
eSOLUTIONS

Gg
The is used to assign values to any variables that are declared in the Declaration

section prior to execution. Again, the default constructor name “RUN_ALGO_NAME" should
be replaced by the name of your algorithm.

Start should only be used in script mode, the function is called only once at the start of the
script execution. In other mode it is essenftially the same as OnTick and thus can be ignored.

OnTick executes when a new price tick has arrived into the system, and is the key function
developers will spend the most time on.

2.3 A Simple Long-Only Momentum Algorithm

Let us begin by developing a simple momentum algorithm: If the previous bar’s CLOSE is less
than the current bar’'s CLOSE, open a pre-defined number of lots BUY position in the Selected
Product at Market Price. Vice versq, if the previous bar’'s CLOSE is higher than the current
bar's CLOSE, settle any outstanding BUY position we have at Market Price. Also, let's rename
our algorithm to “LongOnlyMomentumAIlgo”.

Steps to program:

1. Replace RUN_ALGO_NAME with LongOnlyMomentumAlgo

2. Add an input parameter, “Lots” which defines the number of lots we like our
algorithm to open in the condition of opening a buy position

3. On every tick, check if the current bar has changed. If so, check if the new bar's
CLOSE, compared to the previous bar's CLOSE, requires us to enter or exit a position.

4. Handle the relevant tfrade actions as required

Completing steps 1 and 2, our Declaration and Constructor section of our algorithm become
this:

public class LongOnlyMomentumAIgo : Program

{
[InputParameter] public MDouble Lots = 1.0;

public LongOnlyMomentumAlgo (Interface.lAlgoTradeFunction func) : base(func)

{
}

The [InputParameter] tag is unique to Algoscript and is used to identify the variables that take
the user’s input. The input variables must be public and their type must starts with a prefix “M”,
the variable types that are supported include:

e MbDouble, the Algoscript implementation of the double C# element

e Mint, the Algoscript implementation of the int C# element

e MString, the Algoscript implementation of the string C# element

e MbDateTime, the Algoscript implementation of the DateTime C# object

Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017
FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

GLOBAL
eSOLUTIONS

5
In this case an input double by the name “Lots” was declared with a default value of 1.0.

We are now ready to engage steps 3 and 4. Our frading logic dictates that the current bar's
CLOSE should be compared with the previous bar’'s CLOSE to defermine whether we should
make a frade. However, because the OnTick function will be triggered on every fick price
change instead of every bar change, we would need a method to determine whether a bar
has changed when the OnTick function was triggered.

To do this, we will make use of an AUTON inbuilt function GetChartDataTime(), the definition
of which can be accessed from AUTON Algoscript panel by clicking on the Document->API
Document menu option:

Program.MDate Time AlgoTrade.Interface.lAlgoTradeFunction.GetChartDataTime (Program.MString product,
Program.Mint period,
Program.Mint shift
)

Returns Time value for the bar of indicated product with period and shift. If local history is empty (not loaded), function
returns 0.

Parameters
product GetProductDesc the data of which should be used to calculate study. NULL means the current product.
period period. It can be any of period enumeration values. 0 means the current chart period.

shift Index of the value taken from the study buffer (shift relative to the current bar the given amount of periods
ago).

Returns
Time

The MDateTime of the latest bar can be accessed by:

| MDateTime dtCurrentTime = GetChartDataTime(null, 0, 0);

If the MDateTime of the current bar has changed from our last check, then there is a new bar
of price data (which is refreshed every period). Knowing this, we set a private DateTime?
variable in our Declaration section, dtLastBarTime, to keep track of our latest bar time:

| private DateTime? diLastbarTime = null;

Within the OnTick function, add an if statement that determines whether if the bar has
changed:

MDateTime dtCurrentTime = GetChartDataTime(null, 0, 0);
If (dfLastBarTime == null | | dtLastBarTime.Value I= dtCurrentTime.csDatetime)

{

dtLastBarTime = dtCurrentTime.csDatetime;
// Rest of the frade logic goes here

else
Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017

FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

GLOBAL
eSOLUTIONS

&

| return O;

The MDateTime.csDatetime parameter is used to return a C# Datelime object given an
MDateTime.

Now on to the meat of the algorithm; to compare the CLOSE of the previous two bars, use
the functions:

MDouble numClose = GetChartDataClose(null, 0, 1);
MDouble numPrevClose = GetChartDataClose(null, 0, 2);

Furthermore, the function to open and close an order:

Mint nTicket = SubmitOpenOrder(GetProductDesc(), Const.OP_BUY, Lots, Ask, 0, 0, 0, “Long
Momentum”, 0, null, null);
MBool bSuccess = SubmitCloseOrder(nTicket, Lots, Bid, 0, null);

This requires adding two exira variables in the Declaration section to keep frack of the
outstanding order:

private int nTicket = 0;
private bool bOutstanding = false;

We are now ready to code the OnTick function, as shown below:

public void OnTick()
{
double numBid = GetCurrentQuote (GetProductDesc(), Const. MODE_BID);
double numAsk = GetCurrentQuote (GetProductDesc (), Const. MODE_ASK);
MDateTime dtCurrentTime = GetChartDataTime(null, O, 0);
If (dfLastBarTime == null | | dtLastBarTime.Value = dtCurrentTime.csDateTime)
{
dfLastBarTime = dtCurrentTime.csDateTime;
MDouble numClose = GetChartDataClose (null, 0, 1);
MDouble numPrevClose = GetChartDataClose(null, 0, 2);
// Buy
if (numClose > numPrevClose)
if (lbOutstanding)
{
nTicket = SubmitOpenOrder(GetProductDesc(), Const.OP_BUY, Lofs,
numaAsk, 0, O,
0, “Long Momentum”, O, null, null);
bOutstanding = frue;
}
}
// Settle Buy, if there is an order outstanding
else
{
if (oOutstanding)
{
bool bSuccess = SubmitCloseOrder(nTicket, Lots, numBid, 0, null);
Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017

FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

GQQ GLOBAL
eSOLUTIONS
if (loSuccess)
bOutstanding = false;
else
Print("Failed to SETTLE BUY: " + GetLastExecutekError());
}
}
}
else
return O;
return O;
}

The SubmitOpenOrder function returns a ticket number by which characteristic your
algorithm can use determine the status of the order:

e [f nTicket <0: The order is pending for dealer acceptance
e [f nTicket = 0: The order is rejected by the dealer
e If nTicket > 0: The order is accepted by the dealer

The ideal case is of course the order being immediately accepted by the dealer; in such
case we will set the status of the "bOutstanding” bool value to true, to indicate that an
outstanding position is currently being held by the system. In the case of an order rejection,
the trade is simply skipped without setting “bOutstanding” to frue.

The more difficult case is when the order is pending for the dealer's acceptance. Here the
system will return with a temporary negative ticket number, the order either upon
acceptance by the dealer will turn info an order with a positive ticket number or upon
rejection will simply disappear from the system. However, retrieving the detail of any order
requires first selecting it with the ticket number; with the ticket number either changing or
disappearing, the order can no longer be referenced and we wouldn’t know whether it was
accepted orrejected.

The solution to this problem requires the creation of a function to check for the status of the
ticket given a unique identifier number (magic number) was set on the original order when
sent. Therefore we add an additional input field to our algorithm in the Declaration section:

[InputParameter] public Mint MagicNumber = 10001;
private bool bPending = false;

We make a modification to our OnTick function to check if there is any pending order and to
add in the input of the MagicNumber to our SubmitOpenOrder call:

public void OnTick()

{
CheckPendingOrderfFill();

double numBid = GetCurrentQuote (GetProductDesc(), Const. MODE_BID);
double numAsk = GetCurrentQuote (GetProductDesc(), Const. MODE_ASK);

MDateTime dtCurrentTime = GetChartDataTime(null, O, 0);

If (dtLastBarTime == null | | dtLastBarTime.Value |= diCurrentTime.csDateTime)

{
Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017

FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

GLOBAL
eSOLUTIONS

&

dfLastBarTime = dtCurrentTime.csDateTime;
MDouble numcClose = GetChartDataClose(null, 0,
MDouble numPrevClose = GetChartDataClose(null, O, 2);

// Buy
if (numClose > numPrevClose)

{
if (lbOutstanding && IbPending)
{

numaAsk, 0, 0, 0, “Long Momentum”, MagicNumber, null, null);
if (nTicket > 0)

{
Print(*OPEN BUY Order: Accepted”);

bOutstanding = frue;
}

else if (nTicket < 0)

{
Print(*OPEN BUY Order: Dealer Pending”);

bPending = true;

else if (nTicket == 0)

{
}

Print(“OPEN BUY Order: Rejected”);

}
}

// Settle Buy, if there is an order outstanding
else

{
if (oOutstanding)

{
bool bSuccess = SubmitCloseOrder(nTicket, Lots, numBid, O, null);
if (loSuccess)
bOutstanding = false;
else
Print("Failed to SETTLE BUY: " + GetLastExecuteError());

}
}

else
return O;

nTicket = SubmitOpenOrder(GetProductDesc(), Const.OP_BUY,

Lots,

Finally, we implement the CheckPendingOrderfFill function:

private void CheckPendingOrderfill()

{
if (lbPending)

return;

// Pending outstanding OPEN BUY
for (inti=0;i < GetOutstandingOrderCount(); i++)

Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017
FERPEREAZ/ BREZPLETHESFUE=FBNZE W: www.ges.com.hk

GLOBAL
eSOLUTIONS

&

{
if (ISelectOrder(i, Const.SELECT_BY_PQOS, Const. MODE_TRADES))

break;
if (GetOrderlD() == null | | GetOrderlD() |= MagicNumber)
continue;
if (GetOrderTicket() > 0)
{
nTicket = GetOrderTicket();
Print(“Pending OPEN BUY Order: Accepted”);
bOutstanding = true;
bPending = false;
return;

}
else if (GetOrderTicket() == 0)

{
nTicket = 0;
Print("Pending OPEN BUY Order: Rejected”);
bPending = false;
return;

}

// Order disappeared, treat as rejected
nTicket = 0;

Print("Pending OPEN BUY Order: Rejected");
bPending = false;

return;

}

The algorithm is now completed.

using System;
using AlgoTrade.Interface;
namespace AlgoTrade
{
public class LongOnlyMomentumAlgo : Program
{
[InputParameter] public MDouble Lots = 1.0;
[InputParameter] public Mint MagicNumber = 10001;
private DateTime?2 dtLastBarTime = null;
private int nTicket = 0;
private bool bOutstanding = false;
Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017

FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

GLOBAL
eSOLUTIONS

&

private bool bPending = false;

public LongOnlyMomentumAlgo (Interface.lAlgoTradeFunction func) : base(func)

{

/**

Start() will be called when using script mode
**/
public override int Start ()

{

// Start your implementation here

return O ;

/**
OnTick() will be called when using Run With ... mode
**/

public override int OnTick()

{
CheckPendingOrderfFill();
double numBid = GetCurrentQuote(GetProductDesc(), Const. MODE_BID);
double numAsk = GetCurrentQuote (GetProductDesc(), Const. MODE_ASK);
MDateTime dtCurrentTime = GetChartDataTime(null, O, 0);
Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017

FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

&

GLOBAL
eSOLUTIONS

{

NUMAGSK,

if (dtLastBarTime == null | | dtLastBarTime.Value I= dtCurrentTime.csDatetime)

dtLastBarTime = dtCurrentTime.csDatetime;

// Rest of the frade logic goes here
MDouble numClose = GetChartDataClose(null, 0, 1);

MDouble numPrevClose = GetChartDataClose(null, 0, 2);

// Buy
if (numClose > numPrevClose)

{
if (lbOutstanding && IbPending)

{

nTicket = SubmitOpenOrder(GetProductDesc(), Const.OP_BUY, Lofts,

0, 0, 0, "Long Momentum", MagicNumber, null, null);
if (nTicket > Q)
{
Print("OPEN BUY Order: Accepted");
bOutstanding = frue;
}
else if (nTicket <0)
{
Print("OPEN BUY Order: Dealer Pending');
bPending = true;
}
else if (nTicket ==0)

{

Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017
FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

Geg GLOBAL
eSOLUTIONS
Print("OPEN BUY Order: Rejected");
}
}
}

// Settle Buy, if there is an order outstanding
else

{

if (oOutstanding)

{

if (bSuccess)
bOutstanding = false;
else

Print("Failed to SETTLE BUY
GetlLastExecutekError());

}

}

else

return O;

return O;

private void CheckPendingOrderfill()

{
if (lbPending)

return;

bool bSuccess = SubmitCloseOrder(nTicket, Lots, numBid, 0, null);

(" + nlicket + ") " +

Global eSolutions (HK) Limited
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong
FERPEREAZ/ BREZPLETHESFUE=FBNZE

T: +852 3412 3600
F: +852 2851 0017
W: www.ges.com.hk

GLOBAL
eSOLUTIONS

&

// Pending outstanding OPEN BUY

for (inti=0;i < GetOutstandingOrderCount(); i++)

{

if (ISelectOrder(i, Const.SELECT_BY_PQOS, Const. MODE_TRADES))

break;

Print("Order" +i+":" + GetOrderlD());

if (GetOrderlD() == null | | GetOrderlD() != MagicNumber)

continue;

if (GetOrderTicket() > 0)

{
nTicket = GetOrderTicket();
Print("Pending OPEN BUY Order: Accepted");
bOutstanding = frue;
bPending = false;
return;
}

else if (GetOrderTicket() == 0)

{
nTicket = 0;
Print("Pending OPEN BUY Order: Rejected");
bPending = false;
return;
}

Global eSolutions (HK) Limited
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong
FERPEREAZ/ BREZPLETHESFUE=FBNZE

T: +852 3412 3600
F: +852 2851 0017
W: www.ges.com.hk

GLOBAL
eSOLUTIONS

&

// Order disappeared, treat as rejected
nTicket = 0;

Print("Pending OPEN BUY Order: Rejected");
bPending = false;

return;

3 Executing the Algoscript

AUTON supports four ways in which an Algoscript file can be run:

1. Run - Executing the algorithm as a script

2. Run With Price — Attaching the algorithm to a security and executes it using live price

3. Run With Price (Chart) — Invoke a chart window and executes the algorithm using live
price

4. Back Testing — Invoke the back-tester which executes the algorithm using historical
price

3.1 Running the Algoscript in Live Mode

Let's attach the script we created in the previous section to a chart for execution. Click on
the menu option Run -> Run With Price (Chart).

File Build | Execute | Document
EX Sample Scrig Run Fo E
1 - Run With Price F7 |
z usi Run With Price(Chart) F8 |
& usi .
4 aai Back Testing F9
5 Abort
& N ATy mrooE
T

I_l:_l Z

A menu pops up to enable the user to input the tfrade product and the chart time interval.
For the time being, select the product 00005.HK (HSBC Holdings) and a chart interval of 1
minute with 2000 points of data. Click on the Input Parameter Tab.

Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017
FERPEREAZ/ BREZPLETHESFUE=FBNZE W: www.ges.com.hk

GLOBAL
eSOLUTIONS

&
rA Algo Launcher

Bun Input Parameter

Wanable Type Walue

Lots MDouble 1
MagicMumber Mint 10001

[

Noficed the variables we designated as [InputParameter] are shown here, we can leave the
traded lots fo 1 and Magic Number to 10001. Press OK to start the algorithm.

The Algo Executor will keep track of any frades the algorithm made based on the
embedded Print statements. As expected, the algorithm open trades whenever there is an
uptick in price.

B Algo Executor = = 2

LongOnlyMomentumAlgo ale

3.2 Running the Algoscript in Back Testing Mode

We can conduct a full back-test on the script using the AUTON in-built back-testing suite.
Click on menu option Run -> Back Testing.

Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017
FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

GLOBAL
eSOLUTIONS

&

File Build | Execute | Document
Run F& —
Run With Price F7 o

.) if

Run With Price(Chart) F& D
Back Testing Fa

g8 Abort :,

a9 else

The Back Testing menu is similar to that of Run With Price; we will test this strategy against the
USDJPY currency pair using 2000 points of daily price data, with commission per lot and
spread set to zero for demonstration purpose.

Click OK to start the back test.

Ticket [ype Item i e Tin ice Commissi Profit

[SR

(RN

15418700.00
1.05
0.02
50800

). 7 (305300.00) C e (do 11 (-433100.00)
). 705700.00 (3) C e -810500.00 (3)

urrency)
1500000
1000000
500000
0
-500000
-1000000
-1500000
2000000
-2500000

The back test report generated in the end of the execution gives the user an overview of all
the trades that were made by the algorithm, as well as performance information including
Gross Profit/Loss, Maximum Drawdown, Profit Factor, Sortino Ratio, Sharpe Ratio, number of
trades, etc. The report also included an equity chart for visualization of your performance.
This momentum strategy has proven to be profitable for this security (USDJPY) in the past
when executed on daily bar price.

Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017
FEEMTEREAZ/ \BREPLETH=EBFNE=BN\=E W: www.ges.com.hk

GLOBAL
eSOLUTIONS

Rz
4 Help and References

4.1 AlgoTrade API

Perhaps the best place to look for support on Algoscript programming is by the Document-
>AP| Document option menu within AlgoTrade window. The AlgoTrade API contains the
definition of every functions supported by Algoscript and descriptions of their inputs/outputs.

42 GES Support Desk

For enquiries and support, please email us your questions to mkt@ges.com.hk and we will
reply within 48 hours.

Global eSolutions (HK) Limited T: +852 3412 3600
Room 3004-3008, 30/F, Shui On Centre, 6-8 Harbour Road, Wan Chai, Hong Kong F: +852 2851 0017
FERPEREAZ/ BREZPLETHESFUE=FBNZE W: www.ges.com.hk

